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When an electric field is applied to an electrolyte-saturated polymer gel embedded with charged colloidal
particles, the force that must be exerted by the hydrogel on each particle reflects a delicate balance of electrical,
hydrodynamic, and elastic stresses. This paper examines the displacement of a single charged spherical inclu-
sion embedded in an uncharged hydrogel. We present numerically exact solutions of coupled electrokinetic
transport and elastic-deformation equations, where the gel is treated as an incompressible, elastic Brinkman
medium. This model problem demonstrates how the displacement depends on the particle size and charge, the
electrolyte ionic strength, and Young’s modulus of the polymer skeleton. The numerics are verified, in part,
with an analytical �boundary-layer� theory valid when the Debye length is much smaller than the particle
radius. Finally, we identify a close connection between the displacement when a colloid is immobilized in a gel
and its velocity �electrophoretic mobility� when dispersed in a Newtonian electrolyte.
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I. INTRODUCTION

Hydrogels are soft, water-saturated networks of polymer
with molecular-scale porosity. They find widespread use in
molecular-separation technologies �gel electrophoresis�, drug
delivery, scaffolds for tissue engineering, cell culture, wound
care �e.g., �1,2��, and microfluidic pumping and control
�e.g., �3��.

This paper concerns a class of hydrogel composites where
charged colloidal inclusions are immobilized in an uncharged
hydrogel matrix. Matos et al. �4� recently demonstrated that
polyacrylamide hydrogels doped with silica nanoparticles
significantly enhance the electric-field-induced transport of
both charged and uncharged molecules through the compos-
ite. Each charged inclusion experiences electrical, hydrody-
namic, and mechanical contact forces, while the mobile
countercharge produces an electro-osmotic flow that perme-
ates the surrounding polymer. Note that electrokinetic theory
quantifies how the charge and size of the inclusions, the ionic
strength of the electrolyte, and permeability of the gel influ-
ence the electro-osmotic pumping capacity of the composite
�5�, but little is known of the particle displacement and flow-
induced distortion of the polymer matrix.

The particle displacement could be used as a diagnostic to
probe the physicochemical characteristics of the particle-
polymer interface, much like the electric-field-induced par-
ticle velocity �electrophoretic mobility� is used to infer the
so-called � potential of colloidal particles dispersed in New-
tonian electrolytes. Also, knowledge of the microscale strain
field in the hydrogel is essential for establishing the electric
field strength required to initiate microscale fracture. Finally,

the relationship between particle displacement and the elastic
and viscous characteristics of the surrounding matrix is cen-
tral to the rapidly advancing field of microrheology �6,7�,
which seeks to quantify the dynamics and structure of com-
plex fluids �8,9�.

In this work, our principal objective is to quantify how the
particle, electrolyte and hydrogel characteristics influence the
electric-field-induced particle displacement. As a first step,
we solve a model problem where classical electrokinetic
transport processes are coupled to the deformation of an in-
compressible isotropic, homogeneous porous medium. The
analysis is restricted to situations where the applied electric
field is uniform and weak, so the particle displacement is
small and perturbations to equilibrium may be linearized ac-
cordingly. In this manner, our approximations are similar to
those widely adopted in the classical theories of microelec-
trophoresis �10� and other phoretic motion �11�. Neverthe-
less, our calculations are not restricted by the magnitude of
the particle � potential or the thickness of the equilibrium
diffuse layer of counterions �Debye length�.

Before presenting the full model and examining the re-
sults, it is instructive to first consider the expected displace-
ment Z of an inclusion if the bare electrical force �4�a2E is
balanced by an elastic restoring force 2�aEZ. Here, � is the
surface charge density, 4�a2 is the surface area, E is the
electric-field strength, and E is Young’s modulus of the gel.
Accordingly, the particle displacement is �12�

Z = 2�aE−1E . �1�

Equation �1� overestimates the displacement by a factor of
�2 /3��a when �a→� and ����kT /e. Note that �a is the
particle radius a scaled with the Debye length �−1, � is the �
potential, kT is the thermal energy, and e is the fundamental
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charge. When �a→0 and ����kT /e, however, Eq. �1� be-
comes

Z = 2��s�oE−1E ��a → 0, ��� � kT/e� . �2�

Equation �2� and the correct form of Eq. �1� for �a→� �see
Sec. V� are, respectively, reminiscent of the well-known
Hückel and Smoluchowski limits for the electrophoretic mo-
bility �10�. Indeed, despite obvious differences, the inclusion
displacement and electrophoretic velocity have a remarkably
similar and, in general, complicated dependence on the
scaled particle size �a and scaled � potential �e / �kT�.

II. MODELS FOR ELECTROKINETIC TRANSPORT
AND ELASTIC DEFORMATION

As depicted in Fig. 1, we consider a single spherical col-
loid with radius a and surface charge density � embedded in
an unbounded, electrically neutral hydrogel. The gel is mod-
eled as a homogeneous Brinkman medium �13� that is satu-
rated with an aqueous electrolyte �e.g., NaCl�. Together, the
electrolyte concentration, surface charge density and particle
radius manifest as an electrostatic potential � at the colloid
surface �r=a�. Note that the countercharge is concentrated in
a diffuse layer with thickness �Debye length� �−1.

A. Electrokinetic transport

The electrokinetic model used in this work to calculate
the equilibrium and perturbed electrolyte ion concentrations,
pressure, and fluid velocity is a straightforward extension of

the standard electrokinetic model �14� widely used to de-
scribe microelectrophoresis and other electrokinetic phenom-
ena. Details have been presented elsewhere �5,15�. The full
set of �steady� transport equations is

�o�s�
2� = − �

j=1

N

njzje , �3�

j j = nju − zjenj
Dj

kT
� � − Dj � nj , �4�

	�2u − �p = �	/�2�u + �
j=1

N

njzje � � , �5�

with �steady� ion and electrolyte conservation equations

� · j j = 0 and � · u = 0.

The electrostatic potential, N ion concentrations and fluxes,
electrolyte velocity, and pressure are denoted �, nj and j j, u,
and p, respectively. Other variables are the solvent dielectric
constant �s, permittivity of a vacuum �o, fundamental charge
e, ion valances zj and diffusion coefficients Dj, thermal en-
ergy kT, solvent viscosity 	, and Darcy permeability �2. The
Brinkman screening length � denotes the characteristic
length scale over which the fluid velocity disturbance pro-
duced by a net force decays in the porous medium �13�.
Equivalently, the product �	 /�2�u is readily interpreted as a
body force �often termed Darcy drag� that couples the fluid
and solid phases. This hydrodynamic force is linear in the
fluid velocity only when the microscale inertia of the flow is
weak, which is readily established in porous media whose
microscale is of colloidal dimensions. The double-layer
thickness �Debye length� is

�−1 = �kT�s�o/�2Ie2� ,

where I= �1 /2�� j=1
N zj

2nj
� is the bulk ionic strength, with nj

�

the bulk ion concentrations. Since this work deals exclu-
sively with steady �or quasisteady� flows, the fluid velocity
in Eq. �5� is relative to a stationary polymer skeleton.

The equations are solved by perturbing �to linear order�
from an equilibrium base state where u=0 and the equilib-
rium electrostatic potential, ion concentrations, and pressure
are denoted �0, nj

0, and p0, respectively �16,17�. With the
application of a uniform electric field E,

� = �0 + ��, nj = nj
0 + nj�, u = u�,

where

�� = − E · r + �̂�r�E · er, nj� = n̂j�r�E · er,

and

u = � 
 � 
 f�r�E

= − 2frr
−1�E · er�er − �frr + frr

−1��E · e��e�, �6�

which defines f�r�. Note that fr=df /dr and frr=d2f /dr2; r is
position in a spherical polar coordinate system �r ,� ,�� with
unit basis vectors �er ,e� ,e��; and ez is the orientation of the
polar axis �er ·ez=cos ��.

E

|u|

|v|

Z

FIG. 1. Schematic representation of a �negatively� charged,
spherical colloid embedded in an unbounded electrolyte-saturated,
elastic polymer gel �elastic Brinkman medium�. An electric field E
is applied that drives electro-osmotic flow u, which, in turn, exerts
a body force on the gel that induces a displacement field v. The net
result of the electrical, hydrodynamic, and elastic stress is a dis-
placement Z of the particle �to the left-hand side�. The dashed lines
denote the equilibrium �right-hand side� and polarized �left-hand
side� diffuse double layers. In the far field �r→��, the velocity and
displacement fields decay as r−3. In this work, the displacement
field is treated as the sum of two fields that each decay as r−1; one
is induced by a particle displacement Z�0 with E=0, and the other
is the flow-induced distortion with E�0 and Z=0.
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At the particle-electrolyte interface �r=a�,

u = 0 �no slip�, j j · er = 0 �no flux� ,

and

�s�o�� · er − �p�o��� · er

= − � �constant surface charge� ,

where �p is the particle dielectric constant and � is the
�constant� surface charge density; the subscripts attached to
the gradient operators distinguish the particle ��� and sol-
vent �� sides of the interface.

In the far field �r→��,

� → − E · r + �E · er�DEr−2,

nj → nj
� + �E · er�Cj

Er−2,

u → − 2CEr−3�E · er�er − CEr−3�E · e��e�, �7�

where the scalar coefficients DE, Cj
E, and CE	 /�2 are, respec-

tively, the dipole strengths of the electrostatic potential, ion
concentrations, and pressure perturbations, induced by the
electric field. Note that the far-field flow is a Darcy flow,
u=−��2 /	�� p�, whose screened velocity disturbance decays
as r−3 as r→�.

The full equations and boundary conditions above are the
basis of an efficient numerical solution that yields the so-
called asymptotic coefficients DE, Cj

E, and CE, which have
been used to calculate the bulk electrical conductivity and
pore mobility of dilute polymer-gel composites �5,18�. This
work draws upon CE, and introduces a new asymptotic co-
efficient ZE to characterize the far-field decay of the electric-
field-induced elastic displacement field.

B. Elastic deformation

Elastic deformation of the polymer gel is calculated by
modeling the polymer skeleton as an elastic Brinkman me-
dium, whose equation of static equilibrium is

� · � + �	/�2�u = 0 . �8�

Here, the elastic stress tensor �19� is

� =
E

�1 + ���e +
�

�1 − 2��
�� · v��	 , �9�

where v is the �small-amplitude� displacement, E is Young’s
modulus, � is Poisson’s ratio, e= �1 /2���v+ ��v�T�, and � is
the identity tensor. The second-order tensor � should not be
confused with the surface charge density �.

Substituting Eq. �9� into Eq. �8� gives

E
2�1 + ��

�2v +
E

2�1 + ���1 − 2��
� �� · v� = − �	/�2�u ,

�10�

where, again, the fluid velocity is relative to a stationary
polymer skeleton ��v /�t=0�.

When the �leading order� displacement is divergence free,
which is the situation addressed throughout this paper, defor-

mation can only influence the �isotropic� permeability tensor
��2 /	�� by inducing anisotropy. Note that any deformation-
induced change in permeability yields a nonzero product of
the permeability perturbation and the fluid velocity, the latter
of which is itself a perturbation. Accordingly, these second-
order terms are neglected in the present �linearized� theory.

There is also a possibility of anisotropy in permeability
due to the underlying random microstructure of the medium
�hydrogel matrix�, which itself is not isotropic at very small
length scales. However, we assume this medium to be statis-
tically isotropic and homogeneous, so that, at the level of a
representative volume element �RVE� of the deterministic
continuum, the anisotropy vanishes just as the fluctuations in
constitutive response tend to zero; see Ostoja-Starzewski and
Wang �20� for a random elastic model. Such a scale-
dependent homogenization �i.e., a passage from a random
microstructure to the RVE� was recently studied in the con-
text of Stokesian permeability �21�, albeit the departure from
anisotropy was not addressed explicitly; see also Ostoja-
Starzewski �22� for related studies in many other material
problems.

The Poisson ratios of several widely used, highly swollen,
transparent hydrogels are reported greater than 0.45. In par-
ticular, poly�vinyl alcohol� hydrogels prepared with a mixed
solvent of dimethyl sulfoxide and water have �
0.472 �23�,
and polyacrylamide hydrogels have �
0.457 �24�. However,
it is important to note that these measurements are ascer-
tained from macroscale experiments where the characteristic
length and time scales cannot probe the equilibrium �long-
time� state of strain. For example, the fractional change in
volume after relaxing to equilibrium is �V /L3��1−2��l /L,
where the strain l /L�1 is the ratio of the imposed displace-
ment l to the specimen size L. The flux of solvent flowing
through the specimen during the so-called draining time � is
uc��V / �L2����1−2��l /�. Further, the flux is driven by a
pressure gradient pc /L��	 /�2�uc, where, to balance the
elastic stresses, the characteristic pressure is pc�E�l /L�. To-
gether, the foregoing yield

� � �1 − 2���	/E��L/��2, �11�

so with 	�10−3 Pa s, E�105 Pa, L�10−2 m �macroscale
experiment� and ��10−9 m, the relaxation time is
���1−2��106 s. Clearly, this is extraordinarily long if � is
not sufficiently close to 0.5. Accordingly, when the experi-
mental time scale �e.g., reciprocal frequency� is shorter than
the draining time, the change in volume will be smaller than
at equilibrium, and the apparent Poisson ratio will be greater
than the drained value.

In contrast, the draining time associated with the displace-
ment of a microsphere �L=a�10−6 m� embedded in
a hydrogel with E�105 Pa and ��10−9 m is only
���1−2��10−2 s. Such an experiment is much better suited
to probing the compressibility of the polymer skeleton. How-
ever, solving the problem with a compressible polymer ma-
trix demands a distinctly different computational methodol-
ogy than the one adopted in this paper. Moreover,
compressibility is anticipated to yield quantitative—not
qualitative—changes in the calculated particle displacement.
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This expectation is supported, in part, by the fact that, in the
absence of an electric field, the quasisteady particle displace-
ment varies by at most 25% from the incompressible limit as
Poisson’s ratio spans the range 0–0.5 �25,26�. However, a
definitive conclusion requires a solution of the electrokinetic
equations with arbitrary Poisson’s ratio; a goal that is beyond
the relatively modest scope of the present work, but one that
will be thoroughly addressed elsewhere.

Finally, the density and, hence, rigidity of the inclusions
�e.g., polymer latex or silica� are typically much greater than
those of the gel. Accordingly, the inclusions are treated as
rigid spheres. Moreover, the displacement field is assumed to
be continuous across the inclusion-hydrogel interface. Other
interfacial conditions include the possibility of �tangential�
slip �e.g., �27�� or an opening crack, for example. The open-
ing of a crack significantly complicates the analysis, and a
slipping boundary condition is difficult to justify here, since
it requires a physical mechanism to exert an interfacial radial
stress while maintaining zero �relative� radial displacement
and zero tangential stress. Accordingly, neither possibility is
pursued here.

III. SUPERPOSITION TO CALCULATE
THE PARTICLE DISPLACEMENT

It is convenient to calculate the electric-field-induced par-
ticle displacement Z by superposing two linearly indepen-
dent displacement fields.

One is the displacement field induced by a small displace-
ment Z of the inclusion in the absence of an electric field
�E=0�. There is no Darcy drag, and the solution of Eq. �10�
can be calculated analytically �see Appendix A�. The result-
ing mechanical-contact force exerted by the polymer on the
particle is �28�

f m,Z = −
2�aEZ�1 − ��

�5/6 − ���1 + ��
. �12�

The other arises from the Darcy drag force when an electric
field E is applied and the inclusion is fixed at the origin �Z
=0�. The Darcy drag force in Eq. �10� is calculated from the
electrokinetic transport equations with a rigid polymer gel.
Then the displacement can be obtained by solving Eq. �10�.
This is detailed in Sec. IV, where it is also shown that the
mechanical-contact force exerted by the polymer on the in-
clusion is

f m,E = �8/3��ZEEE − 4��	/�2�CEE�� = 0.5� . �13�

In addition to the net mechanical-contact force

f m = f m,Z + f m,E, �14�

there are electrical and hydrodynamic �drag� forces acting on
the particle, denoted f e,E and f d,E, respectively. These are
already known from earlier solutions of the electrokinetic
transport equations with a rigid �unperturbed� polymer gel
�5,15�. Their sum can be written in terms of the asymptotic
coefficient CE that characterizes the far-field decay of the
electric-field-induced flow,

f e,E + f d,E = 4��	/�2�CEE . �15�

Finally, static equilibrium of the particle demands

f e,E + f d,E + f m,Z + f m,E = 0 . �16�

Therefore, collecting the explicit expressions for the various
forces above �Eqs. �12� and �13� �with �=0.5�, and �15��
gives the particle displacement

Z = �4/3��ZE/a�E �� = 0.5� . �17�

The task of calculating ZE is detailed in the next section.
Note that the contributions involving CE vanish, indicating
that the slowest �r−1� far-field decay of the displacement field
vanishes upon superposition. In other words, there is no net
force acting on the polymer, so the Darcy drag force exerted
by the electrolyte on the polymer is counterbalanced by the
mechanical-contact force exerted by the inclusion on the
polymer. In a composite with a finite inclusion number den-
sity, or finite volume fraction �, part of the net mechanical-
contact force acting on the polymer must be provided by a
mechanical support to balance an accompanying O��� aver-
age pressure gradient �5�.

IV. ELECTRIC-FIELD-INDUCED MECHANICAL-
CONTACT FORCE FOR AN INCOMPRESSIBLE,

ELASTIC BRINKMAN MEDIUM

This section addresses the displacement induced by Darcy
drag when an electric field is applied and the inclusion is
fixed at the origin. This problem is adopted to calculate the
force f m,E appearing in Eq. �13�. Note that the numerical
solution is limited to incompressible �� ·v=0� displacement
fields, so �=0.5.

In Appendix B, the displacement field is expanded as a
power series in a small parameter �=1−2�, i.e.,

v = v0 + �v1 + ¯ . �18�

The leading contribution to the displacement v0 is diver-
gence free �� ·v0=0� and satisfies the O��� equation of static
equilibrium,

�2v0 + ��� · v1� = − �	/�2��3/E�u �� = 0.5� . �19�

Note that � ·v1 is conventionally redefined as a pressure.
Indeed, as shown in Appendix B, this quantity appears as an
isotropic stress.

Incompressibility �as required by the O�1� problem� is
guaranteed by writing

v0 = � 
 � 
 g�r�E , �20�

where g�r� is a function of radial position r. It follows that

v0 = − 2grr
−1�E · er�er − �grr + grr

−1��E · e��e�, �21�

where, for example, gr=dg /dr.
Because the fluid is also incompressible, its velocity field

may be written as

u = � 
 � 
 f�r�E , �22�

where f�r� is available from earlier work examining the in-
fluence of an electric field �5� and a bulk concentration gra-
dient �15� with a rigid polymer gel �v=0�.
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If the deformation is assumed not to affect electrokinetic
transport processes, which is a reasonable approximation
when the displacement is divergence free �so the polymer
segment density and, hence, the Darcy permeability are un-
perturbed�, then the earlier calculations also provide an exact
solution with �weak� elastic deformation.

Substituting Eqs. �20� and �22� into the curl of Eq. �19�
gives

d

dr
�2�2g +

3	

E�2

d

dr
�2f = 0, �23�

where

�2 =
1

r2

d

dr
�r2 d

dr
	 , �24�

and f�r� is known. In this manner, v0 is decoupled from v1.
The fourth-order ordinary differential equation for gr�r� is

solved numerically as two second-order differential equa-
tions �29�,

d2h

dr2 +
4

r

dh

dr
−

4

r2h = −
3	

E�2�d2fr

dr2 +
2

r

dfr

dr
−

2

r2 fr	 , �25�

d2gr

dr2 = h . �26�

When the displacement is continuous across the
inclusion-hydrogel interface, and vanishes in the far field, the
boundary conditions are

v0 = 0 at r = a �27�

and

v0 → − 2ZEr−1�E · er�er − ZEr−1�E · e��e� as r → � .

�28�

The asymptotic coefficient ZE characterizes the strength of
the r−1 decay of v �reflecting a net force�. It follows that

gr = grr = 0 at r = a �29�

and

gr → ZE and grr → 0 as r → � . �30�

An analytical boundary-layer analysis that solves the prob-
lem when �a�1, ��a, and ����kT /e serves to verify the
numerical solution and to highlight the parametric scaling of
Z. The result is presented in Sec. V �Eq. �39��, where we also
examine numerically exact solutions of the full model.

Turning to the force, the leading contribution to the iso-
tropic stress requires knowledge of the O��� displacement
field v1, which is not divergence free �see Appendix B�.
Clearly, the divergence of v1 is necessary to evaluate the
leading contribution to the force. Fortunately, the isotropic
stress can be obtained from the solution of the O��� problem
above. This is achieved by integrating Eq. �B4� once v0 is
known. The task is simplified even further, because only the
far-field decay of the displacement and fluid velocity fields
are needed to evaluate the force. We have verified our gen-

eral procedure by applying it to two simpler problems: one is
the classical problem of Stokes flow past a sphere, and the
other is the elastic restoring force on a rigid sphere embed-
ded in an incompressible elastic continuum. Recall, the exact
solution of the latter problem, for any � �see Eq. �12��, is
worked out in Appendix A.

The mechanical-contact force exerted by the polymer on
the inclusion is

f m,E = �
r=a

� · n̂dA = �
r→�

� · n̂dA + �
r=a

�

�	/�2�udV .

�31�

Note that �see Appendix B�

� =
2E
3
e0 +

1

2
�� · v1��� , �32�

where e0= �1 /2���v0+ ��v0�T�, from Eq. �19�,

� · v1 = − �
�

r

���2v0� + �3/E��	/�2�u� · erdr �33�

and

u = − 2frr
−1�E · er�er − �frr + frr

−1��E · e��e�

→ − 2CEr−3�E · er�er − CEr−3�E · e��e� as r → � .

�34�

Recall, CE is the asymptotic constant that represents the di-
pole strength of the far-field pressure field �decaying as r−2�
that drives the far-field Darcy flow �decaying as r−3�.

Evaluating the first integral on the right-hand side of Eq.
�31� over the surface of a large concentric sphere gives

�
r→�

� · n̂dA = �8/3��ZEEE − �4/3���	/�2�CEE �� = 0.5� .

�35�

The volume integral can be transformed to another integral
over the surface of a large concentric sphere �� ·u=0 and
u�r=a�=0� giving

�
r=a

�

�	/�2�udV = �	/�2��
r→�

�x · u�n̂dA

= − �8/3���	/�2�CEE . �36�

Finally, adding Eqs. �35� and �36� gives the mechanical-
contact force as it appears in Eq. �13�.

V. RESULTS

When solving the equations numerically, the characteristic
scales adopted for length, velocity, and displacement are

�−1,u� = �s�o�kT/e�2/�	a� and 	u�/E = �s�o�kT/e�2/�Ea� ,

respectively. It is therefore convenient to introduce a dimen-

sionless asymptotic coefficient ẐE so
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ZE =
�s�o�kT/e�a

E��a�2 ẐE. �37�

Accordingly, the particle displacement �Eq. �17�� is

Z = �4/3�
�s�o�kT/e�

E��a�2 ẐEE . �38�

The independent dimensionless parameters adopted below

are �a, �e / �kT�, and ��. Note that ẐE is independent of E,
and, furthermore, we will see that the displacement is a very
weak function of �. Using a boundary-layer approximation
for CE �18�, an analytical solution for ZE, when �a�1,
��a, and ����kT /e, yields

Z → 3��s�oE−1E as �a → � , �39�

which is the counterpart to Eq. �2� identified in the introduc-
tion.

A. Particle displacement with NaCl electrolytes

To draw a closer connection to experiments, Z /E is plot-
ted in Figs. 2 and 3 with E=1 kPa. Therefore, actual dis-
placements Z �nm� can be conveniently obtained by multi-
plying the ordinates by the electric field strength E �V cm−1�
and dividing by Young’s modulus E �kPa�.

Figure 2 shows Z /E as a function of the scaled � potential
�e / �kT� for a particle with radius a=500 nm and a hydrogel
with Young’s modulus E=1 kPa ��=0.5� and Brinkman

screening length �=5 nm. The electrolyte is NaCl, with
ionic strengths corresponding to �a=1−103. As expected,
the �negative� particle displacement is in the direction of the
electrical force, 4�a2�E, and increases with the magnitude
of the � potential ���0�.

At low � potentials, the displacement is clearly propor-
tional to ��� and, hence, the surface charge density
�=�s�o�� �when ����kT /e�. As expected, the numerical so-
lutions approach the boundary-layer theory �Eq. �39�� as
�a→�. However, the numerical results reveal distinct maxi-
mums at moderate and large values of ���; these are due to
polarization of the diffuse double layer. As is well known
from electrophoresis �e.g., �16��, polarization diminishes the
local electric field, thereby attenuating the electrical force.
Because polarization by electromigration and relaxation by
molecular diffusion are practically independent of the poly-
mer gel in this model �5�, they are as significant here as they
are in electrophoresis.

Figure 3 shows Z /E under the same conditions as in Fig.
2, but now as a function of the scaled reciprocal double-layer
thickness �a, with each curve corresponding to a constant �
potential. The displacement is clearly a weak function of �a,
particularly when ��� is small, and, as expected from Fig. 2, a
much stronger function of �. Clearly, this way of presenting
the results emphasizes the large values of �a required for the
boundary-layer theory to be accurate.

Since Figs. 2 and 3 are presented with a fixed value of
� /a=0.01, it remains to establish the influence of the Darcy
permeability �or Brinkman screening length�. Recall, the
boundary-layer theory �Eq. �39�� indicates that the displace-
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ment is independent of �. More generally, however, the par-
ticle displacement reflects the far-field electric-field-induced
distortion of the polymer skeleton when the particle is fixed
at the origin by an external force

f E = − f d,E − f e,E − f m,E = − �8/3��ZEEE . �40�

Figure 4 shows how the particle displacement varies over 4
decades of the scaled Brinkman screening length �� when
�e / �kT�=−6 and �a=10−2−103. While there are obvious
transitions when ���1 �from plateaus where ��→0 and ��,
the displacement is remarkably insensitive to �.

In the next section, we identify a simple transformation
that permits ZE and, hence, the particle displacement, to be
approximated by the well-known electrophoretic mobility,
which, of course, is independent of �. Accordingly, we write

Z = 3��s�oE−1f��a,�e/�kT�,���E , �41�

where the dimensionless function

f��a,�e/�kT�,��� =
4ẐE��a,�e/�kT�,���

9��a�2�e/�kT�
�42�

and, to a reasonable approximation,

f��a,�e/�kT�,��� 
 f��a,�e/�kT�,�� . �43�

It follows that Fig. 2 or Fig. 3 is sufficient to span a signifi-
cant range of the parameter space �strictly for negatively
charged inclusions and NaCl electrolyte�. Furthermore, from
Eqs. �2� and �39�, it is evident that f →2 /3 as �a→0 �with
����kT /e� and f →1 as �a→�.

B. Connection to the electrophoretic mobility

The displacements shown in Figs. 2 and 3 bear a close
resemblance to the electrophoretic mobility �16�, so we
present in Figs. 5 and 6 a scaled displacement

�Z/E�Ee/�2�s�okT� = �3/2�f��a,�e/�kT�,����e/�kT�

�44�

for a symmetrical electrolyte �KCl� �solid lines, Fig. 5� and a
representative asymmetric electrolyte �Ba�NO3�2� �Fig. 6�.
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This dimensionless quantity �solid lines� has a very similar
dependence on �a and �e / �kT� as the scaled electrophoretic
mobility �dashed lines�

�U/E�3	e/�2�s�okT� �45�

presented in the well-known paper by O’Brien and White
�see �16�, also see their Figs. 3, 4, and 6� �30�. Here, U is the
electrophoretic velocity, i.e., the translational velocity ac-
quired by a charged spherical colloid dispersed in a Newton-
ian electrolyte in response to a �weak� electric field E.

The difference between the scaled mobility and scaled
displacement highlighted in Fig. 5 is small when ����kT /e,
but increases appreciably when �a�1 and ���3kT /e. Note
that the scaled mobility is smaller than the respective scaled
displacement, because the electrophoresis problem overesti-
mates the convective contribution to the ion fluxes, thereby
over-polarizing the diffuse double layer and, therefore, un-
derestimating the electrical force in the particle-displacement
problem.

A simple but approximate relationship between Z /E and
U /E can be established by eliminating the Darcy drag force
from the fluid momentum equation �Eq. �5�� and the polymer
equation of static equilibrium �Eq. �10��. More specifically,
adding Eqs. �5� and �10� produces the momentum conserva-
tion equation in the electrophoresis problem �i.e., Eq. �5�
without the Darcy drag term� with a modified fluid velocity

u� = u + vE/�3	� . �46�

Recall, u is the fluid velocity in the polymer gel and v is the
displacement of the skeleton.

By setting u=u� in the ion conservation equation, the
solution of the electrophoresis problem �involving only u��
overestimates the convective ion fluxes by an
O��vc /uc�E / �3	�� amount; here, vc and uc are, respectively,
characteristic polymer displacement and fluid velocity scales.

However, since the convective ion fluxes are O�Pej�, where
the Péclet numbers Pej =uc�

−1 /Dj �1, the absolute errors are
small.

Note that the polymer displacement reflects a transfer of
the electrical body force from the fluid to the elastic skeleton.
This transfer occurs by direct coupling of the fluid and poly-
mer �via the Darcy drag force� and through indirect coupling
by the transfer of viscous stresses from the fluid to the par-
ticle, which, in turn, are transferred to the polymer via me-
chanical contact between the particle and polymer. Conse-
quently, the polymer distortion must be independent of the
permeability in so far as the electrical body force is constant.
However, the electrically driven flow increases significantly
with the permeability �either as � or �2, depending on �−1

�5,18��, so the O��vc /uc�E / �3	�� errors in the ion conserva-
tion equations must diminish with increasing permeability.
Accordingly, the solution of the electrophoresis problem
must yield an increasingly accurate solution of the particle
displacement problem as ��→�.

More quantitatively, the solution of the �E� electrophore-

sis problem �16� yields u�� C̄EEr−1 as r→�. Therefore, be-
cause v�ZEEr−1 and u�CEEr−3 as r→�, it follows from
Eq. �46� that

ZE → C̄E3	/E as �� → � �� = 0.5� . �47�

Furthermore, since the electrophoretic mobility

M � U/E = C̄E/C̄U, �48�

where C̄E and C̄U are the asymptotic coefficients associated
with the far-field decay of the fluid velocity in the �E� and
�U� �electrophoresis� problems �16�, Eqs. �17�, �47�, and �48�
give

Z → F�3	/E�ME as �� → � �� = 0.5� . �49�

Note that F= �4 /3�C̄U /a=Ds /D�1 is the particle drag coef-
ficient, which can be conveniently expressed as the ratio of
the Stokes-Einstein-Sutherland diffusivity �31,32� Ds
=kT / �6�	a� to the actual diffusivity D��a ,�e / �kT���Ds.
The drag coefficient is shown in Fig. 7 for negatively
charged colloidal spheres in a KCl electrolyte. Since
1�F�1.2 and most often 1�F�1.02, the error in the par-
ticle displacement that comes from setting F=1 in Eq. �49�
tends to be small compared to the error arising from finite
��.

To demonstrate the correctness of Eq. �49�, let us briefly
consider a specific example where �e / �kT�=−6 and �a=10.
From Fig. 4, the scaled displacements are 
3.89 and 
3.42
when ��=0.1 and ��→�, respectively. Furthermore, from
Fig. 5, the scaled mobility and drag coefficient are 
3.36
and 
1.016, respectively. Therefore, multiplying the scaled
mobility by the drag coefficient gives 
3.41, which, as ex-
pected, compares extremely well with the value �
3.42� ob-
tained directly when ���1.

We have therefore established that the electrophoretic mo-
bility and drag coefficient combine �as indicated in Eq. �49��
to yield the correct limiting value of the scaled particle dis-
placement as ��→�. Furthermore, the difference between
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layer thickness �a=5: KCl and Ba�NO3�2 at T=298 K;
a=500 nm; �=5 nm; �=0.5.
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the displacement with impenetrable and infinitely permeable
polymer reflects the degree to which polymer influences con-
vective ion transport. Finally, because polarization by con-
vection is weak relative to electromigrative polarization and
diffusive relaxation, the influence of permeability on the dis-
placement is generally small. It should be noted, however,
that Young’s modulus �or shear modulus� of the skeleton and
the permeability both vary with the polymer density accord-

ing to scaling laws that have been studied extensively in the
polymer physics literature �e.g., �33��. In practice, therefore,
particle displacements are expected to vary primarily with
the modulus, with relatively insignificant changes due to the
accompanying change in permeability.

VI. SUMMARY

We presented a theoretical model to calculate the electric-
field-induced displacement of a charged, spherical colloid
embedded in an electrolyte-saturated polymer gel. The stan-
dard electrokinetic model describes electric-field-induced
transport of ions and electrolyte momentum, with a Darcy-
drag term that couples the electrolyte mass and momentum
conservation equations �Brinkman’s equations� to a con-
tinuum equation of static equilibrium for an unbounded, in-
compressible, linearly elastic polymer skeleton.

The scaled particle displacement

�Z/E�Ee/�2�s�okT�

has a similar dependence on �e / �kT� and �a as the well-
known scaled electrophoretic mobility

�U/E�3	e�2�s�okT� .

More precisely, we showed that the product of the scaled
electrophoretic mobility and particle drag �friction� coeffi-
cient yields the exact scaled displacement when ��→� �i.e.,
when the polymer skeleton presents zero hydrodynamic re-
sistance to flow�. However, because the particle displacement
decreases only slightly as �� passes through �1, when in-
creasing from 0 to �, the scaled electrophoretic mobility pro-
vides an excellent approximation of the scaled displacement
over a wide range of the experimentally accessible parameter
space. Therefore, as expected from electrophoresis, the
scaled displacement is linear in the � potential when ���
�2kT /e, and has distinct maximums when ����5kT /e. The
decrease in displacement with increasing � potential is due to
polarization and relaxation of the diffuse double layer. Evi-
dently, polarization is dominated by electromigration, since
the influence of convection, which can be completely ar-
rested by a hydrodynamically impenetrable polymer skel-
eton, is extremely weak.

We did not examine the stresses in the surrounding poly-
mer. Nevertheless, our calculations provide an important first
step toward future studies aimed at quantifying the micro-
scale states of stress �and strain� when these soft composite
materials are subjected to electric fields. Our model may be
helpful for studying fracture, and it provides a means of
quantitatively interpreting experiments designed to measure
small electric-field-induced displacements of charged inclu-
sions. In turn, these could be used to probe the mechanics of
weak �uncharged� polymer gels at length and time scales that
are beyond the reach of conventional �macroscale� rheom-
eters.
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APPENDIX A: FORCE TO DISPLACE A FINITE SIZED
SPHERE EMBEDDED IN A COMPRESSIBLE

ELASTIC CONTINUUM

This appendix provides an analytical solution of the equa-
tion of static equilibrium in the absence of body forces
�Darcy drag�. In turn, the force required to displace �by dis-
tance Z� a rigid sphere �with radius a� embedded in an un-
bounded elastic continuum �with Young’s modulus E and
Poisson’s ratio �� is obtained.

Substituting a solution of the form

v = v0 + v1, �A1�

where

�2v0 = 0 , �A2�

into the equation of static equilibrium �Eq. �10�� gives

�2v1 +
1

�1 − 2��
� �� · �v0 + v1�� = 0 . �A3�

Taking the curl yields

�2�� 
 v1� = 0, �A4�

which, with the prevailing axial symmetry, provides a scalar
equation for ��
v1� ·e�. Since �
v1 is an harmonic
pseudovector, symmetry and linearity yield a nonzero decay-
ing solution �
v1�Z
�r−1. It follows that v1�Zr−1,
which is harmonic and, hence, can be attributed to v0. Ac-
cordingly, the only nonharmonic contribution to v1 is irrota-
tional ��
v1=0� and, hence,

v1 = �� , �A5�

where � is a scalar function of position. Substituting this into
Eq. �A3� gives

��� · v0 + 2�1 − ���2�� = 0 , �A6�

so

� · v0 + 2�1 − ���2� = 0. �A7�

Again, symmetry and linearity considerations yield the gen-
eral decaying solution

v0 = c0Z + c1Zr−1 + c2�Z · �� � �r−1� . �A8�

It follows that

� · v0 = c1Z · ��r−1� �=− c1Z · err
−2� �A9�

and, hence,

�2� = −
c1Z · ��r−1�

2�1 − ��
. �A10�

Note that �2�=r−1 has the solution �=r /2, so writing Eq.
�A10� as

�2� = −
c1Z · ���2��

2�1 − ��
�A11�

requires

� = −
c1Z · er

4�1 − ��
�A12�

and, hence,

v1 = �� = −
c1

4r�1 − ��
�Z − �Z · er�er� . �A13�

Finally, the complete displacement field is

v = c0Z +
c1

r
Z −

c1

4r�1 − ��
�Z − �Z · er�er�

+
c2

r3 �3�Z · er�er − Z� , �A14�

where the scalar constants c0, c1, and c2 must be chosen to
satisfy the boundary conditions.

1. No-slip boundary condition

If, for example, v→−Z as r→� and v=0 at r=a �fixed�,
then c0=−1 and

0 = − Z +
c1

a
Z +

c2

a3 �3�Z · er�er − Z�

−
c1

4a�1 − ��
�Z − �Z · er�er� , �A15�

which requires

c1 =
6�1 − ��a
�5 − 6��

and c2 =
a3

2�6� − 5�
. �A16�

The mechanical-contact force on the inclusion is therefore

f m = �
r=a

� · n̂dA = −
2�Ec1Z

�1 + ��
= −

12�EaZ�1 − ��
�5 − 6���1 + ��

.

�A17�

Note that the displacement field can be rewritten in terms
of the force, so the Green’s function

G =
�1 + ��

8�E�1 − ��r
��3 − 4��� + erer� �A18�

is obtained by changing reference frames �v=Z at r=a, and
v→0 as r→�� and letting a→0.

2. Slip boundary condition

Again, if v→−Z as r→�, but v ·er=0 at r=a �zero radial
displacement� and � ·er− �� ·er� ·erer=0 at r=a �zero tan-
gential stress�, then c0=−1, and

c1 =
6�1 − ��a
�7 − 8��

and c2 =
�1 − 2��a3

2�7 − 8��
. �A19�

The mechanical-contact force �on the inclusion� is then

f m = −
2�Ec1Z

�1 + ��
= −

12�EaZ�1 − ��
�7 − 8���1 + ��

. �A20�
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APPENDIX B: LEADING-ORDER ISOTROPIC STRESS
FOR AN INCOMPRESSIBLE ELASTIC CONTINUUM

Writing the displacement field as

v = v0 + �v1 + �2v2 + ¯ , �B1�

where �= �1−2���1, substituting this into the equation of
static equilibrium

�2v +
1

�
� �� · v� = − �	/�2�u

�3 − ��
E , �B2�

and collecting terms of like order in � gives at O�1�,

��� · v0� = 0; �B3�

at O���,

�2v0 + ��� · v1� = − �	/�2�u
3

E ; �B4�

at O��2�,

�2v1 + ��� · v2� = �	/�2�u
1

E ; �B5�

and at O��3�,

�2v2 + ��� · v3� = 0 . �B6�

Note that, if u and v0 are both divergence-free, then � ·v1,
� ·v2, etc., all satisfy Laplace’s equation with general solu-
tion, e.g., � ·v1=a1+b1E ·�r−1.

Because the leading contribution to the displacement v0 is
divergence free �Eq. �B3��, it can be written as

v0 = � 
 � 
 g�r�E . �B7�

Substituting this into the curl of Eq. �B4� gives

d

dr
�2�2g +

3	

E�2

d

dr
�2f = 0, �B8�

where

�2 =
1

r2

d

dr
�r2 d

dr
	 �B9�

and f�r� is known. Clearly, the solution is independent of v1.
Note, however, that v1 contributes to the leading-order stress,

�0 =
2E
3
e0 +

1

2
�� · v1��� , �B10�

where e0= �1 /2���v0+ ��v0�T�. It follows that the leading
contribution to the integral of the surface traction is

f0� =
E
3
�

r→�

��v0 + ��v0�T + �� · v1��� · erdA , �B11�

where �Eq. �B4��

� · v1 = − �
�

r ��	/�2�u
3

E + �2v0	 · erdr�. �B12�

Note that only the far-field decays of u and v0 are necessary
to evaluate this integral when r→�. Recall,

u → − 2CEr−3�E · er�er − CEr−3�E · e��e� as r → � ,

�B13�

so

� · v1 → �2ZE − �	/�2�
3

E
CE	r−2�E · er� as r → �

�B14�

and, hence,

f0� =
E
3
�

r→�
� �v0,i

�xj
+

�v0,j

�xi
	 +

�v1,k

�xk
�ij�er,jdA

= E�16/9��ZEE + E�8/9��ZEE − �4/3���	/�2�CEE

= �8/3��ZEEE − �4/3���	/�2�CEE. �B15�

Finally, adding the volume integral �−�8 /3���	 /�2�CEE�
gives the net mechanical-contact force acting on the inclu-
sion,

f m,E = �8/3��ZEEE − 4��	/�2�CEE . �B16�
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